AI-Based Energy Forecasting Services Market Size, Share, and Trends 2026 to 2035

AI-Based Energy Forecasting Services Market (By Service Type: Forecasting-as-a-Service, Custom Model Development & Integration; By Modeling Technology: Machine Learning/Deep Learning, Hybrid Physics-Informed + ML Models; By Deployment & Delivery Mode: Cloud/SaaS APIs & Portals, Managed Cloud + Expert Support; By Data Inputs Utilized: Smart Meter/AMI Time Series, Weather & Satellite Data; By End-User: Transmission & Distribution System Operators (TSOs/DSOs), Vertically Integrated Utilities & Retail Suppliers) - Global Industry Analysis, Size, Trends, Leading Companies, Regional Outlook, and Forecast 2026 to 2035

Last Updated : 19 Jan 2026  |  Report Code : 7370  |  Category : ICT   |  Format : PDF / PPT / Excel

Chapter 1. Introduction 

1.1. Research Objective 

1.2. Scope of the Study 

1.3. Definition 

Chapter 2. Research Methodology   

2.1. Research Approach 

2.2. Data Sources 

2.3. Assumptions & Limitations 

Chapter 3. Executive Summary 

3.1. Market Snapshot 

Chapter 4. Market Variables and Scope  

4.1. Introduction 

4.2. Market Classification and Scope 

4.3. Industry Value Chain Analysis 

4.3.1. Raw Material Procurement Analysis  

4.3.2. Sales and Distribution Channel Analysis 

4.3.3. Downstream Buyer Analysis 

Chapter 5. COVID 19 Impact on AI-Based Energy Forecasting Services Market  

5.1. COVID-19 Landscape: AI-Based Energy Forecasting Services Industry Impact 

5.2. COVID 19 - Impact Assessment for the Industry 

5.3. COVID 19 Impact: Global Major Government Policy 

5.4. Market Trends and Opportunities in the COVID-19 Landscape 

6.1. Market Dynamics 

6.1.1. Market Drivers 

6.1.2. Market Restraints 

6.1.3. Market Opportunities 

6.2. Porter’s Five Forces Analysis 

6.2.1. Bargaining power of suppliers 

6.2.2. Bargaining power of buyers 

6.2.3. Threat of substitute 

6.2.4. Threat of new entrants 

6.2.5. Degree of competition 

Chapter 7. Competitive Landscape 

7.1.1. Company Market Share/Positioning Analysis 

7.1.2. Key Strategies Adopted by Players 

7.1.3. Vendor Landscape 

7.1.3.1. List of Suppliers 

7.1.3.2. List of Buyers 

Chapter 8. Global AI-Based Energy Forecasting Services Market, By Service Type 

8.1. AI-Based Energy Forecasting Services Market, by Service Type 

8.1.1. Forecasting-as-a-Service (FaaS) / API delivery 

8.1.1.1. Market Revenue and Forecast  

8.1.2. Custom Model Development & Integration 

8.1.2.1. Market Revenue and Forecast  

8.1.3Managed Forecasting & Monitoring Services (SLAs) 

8.1.3.1. Market Revenue and Forecast  

8.1.4Scenario & Market Simulation Services 

8.1.4.1. Market Revenue and Forecast  

8.1.5Model Validation & Audit Services 

8.1.5.1. Market Revenue and Forecast  

Chapter 9. Global AI-Based Energy Forecasting Services Market, By Modeling Technology 

9.1. AI-Based Energy Forecasting Services Market, by Modeling Technology 

9.1.1. Machine Learning/Deep Learning (LSTM, Transformer, XGBoost) 

9.1.1.1. Market Revenue and Forecast  

9.1.2. Hybrid Physics-Informed + ML Models 

9.1.2.1. Market Revenue and Forecast  

9.1.3. Probabilistic & Ensemble Forecasting 

9.1.3.1. Market Revenue and Forecast  

9.1.4Time-Series/Statistical Models (ARIMA family) 

9.1.4.1. Market Revenue and Forecast  

9.1.5Transfer Learning & Federated Learning Approaches 

9.1.5.1. Market Revenue and Forecast  

Chapter 10. Global AI-Based Energy Forecasting Services Market, By March  

10.1. AI-Based Energy Forecasting Services Market, by Deployment & Delivery Mode 

10.1.1. Cloud/SaaS APIs & Portals 

10.1.1.1. Market Revenue and Forecast  

10.1.2. Managed Cloud + Expert Support (outsourced ops) 

10.1.2.1. Market Revenue and Forecast  

10.1.3. On-Premises / Edge Inference (substation/plant) 

10.1.3.1. Market Revenue and Forecast  

10.1.4Hybrid (cloud training + edge inference) 

10.1.4.1. Market Revenue and Forecast  

Chapter 11. Global AI-Based Energy Forecasting Services Market, By Data Inputs Utilized 

11.1. AI-Based Energy Forecasting Services Market, by Data Inputs Utilized 

11.1.1. Smart Meter/AMI Time Series 

11.1.1.1. Market Revenue and Forecast  

11.1.2. Weather & Satellite Data (solar irradiance, wind speed) 

11.1.2.1. Market Revenue and Forecast  

11.1.3. SCADA / Telemetry & SCADA Streams 

11.1.3.1. Market Revenue and Forecast  

11.1.4. Market & Transactional Data (prices, bids) 

11.1.4.1. Market Revenue and Forecast  

11.1.5. IoT/ EV/Building Energy Management Data 

11.1.5.1. Market Revenue and Forecast  

Chapter 12. Global AI-Based Energy Forecasting Services Market, By End-User 

12.1. AI-Based Energy Forecasting Services Market, by End-User 

12.1.1. Transmission & Distribution System Operators (TSOs/DSOs) 

12.1.1.1. Market Revenue and Forecast  

12.1.2. Vertically Integrated Utilities & Retail Suppliers 

12.1.2.1. Market Revenue and Forecast  

12.1.3. Renewable IPPs & Asset Managers (wind/solar/battery fleets) 

12.1.3.1. Market Revenue and Forecast  

12.1.4. Energy Traders & Retail Energy Suppliers 

12.1.4.1. Market Revenue and Forecast  

12.1.5Aggregators/VPP Operators/DER Providers 

12.1.5.1. Market Revenue and Forecast 

12.1.5Large C&I Energy Buyers & Data-Center Operators 

12.1.5.1. Market Revenue and Forecast   

Chapter 13. Global AI-Based Energy Forecasting Services Market, Regional Estimates and Trend Forecast 

13.1. North America 

13.1.1. Market Revenue and Forecast, by Service Type  

13.1.2. Market Revenue and Forecast, by Modeling Technology  

13.1.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.1.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.1.5. Market Revenue and Forecast, by End-User  

13.1.6. U.S. 

13.1.6.1. Market Revenue and Forecast, by Service Type  

13.1.6.2. Market Revenue and Forecast, by Modeling Technology  

13.1.6.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.1.6.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.1.6.5. Market Revenue and Forecast, by End-User Ã¢â‚¬Â¯ 

13.1.7. Rest of North America 

13.1.7.1. Market Revenue and Forecast, by Service Type  

13.1.7.2. Market Revenue and Forecast, by Modeling Technology  

13.1.7.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.1.7.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.1.7.5. Market Revenue and Forecast, by End-User  

13.2. Europe 

13.2.1. Market Revenue and Forecast, by Service Type  

13.2.2. Market Revenue and Forecast, by Modeling Technology  

13.2.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.2.4. Market Revenue and Forecast, by Data Inputs Utilized Ã¢â‚¬Â¯ 

13.2.5. Market Revenue and Forecast, by End-User Ã¢â‚¬Â¯ 

13.2.6. UK 

13.2.6.1. Market Revenue and Forecast, by Service Type  

13.2.6.2. Market Revenue and Forecast, by Modeling Technology  

13.2.6.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.2.7. Market Revenue and Forecast, by Data Inputs Utilized Ã¢â‚¬Â¯ 

13.2.8. Market Revenue and Forecast, by End-User Ã¢â‚¬Â¯ 

13.2.9. Germany 

13.2.9.1. Market Revenue and Forecast, by Service Type  

13.2.9.2. Market Revenue and Forecast, by Modeling Technology  

13.2.9.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.2.10. Market Revenue and Forecast, by Data Inputs Utilized  

13.2.11. Market Revenue and Forecast, by End-User  

13.2.12. France 

13.2.12.1. Market Revenue and Forecast, by Service Type  

13.2.12.2. Market Revenue and Forecast, by Modeling Technology  

13.2.12.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.2.12.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.2.13. Market Revenue and Forecast, by End-User  

13.2.14. Rest of Europe 

13.2.14.1. Market Revenue and Forecast, by Service Type  

13.2.14.2. Market Revenue and Forecast, by Modeling Technology  

13.2.14.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.2.14.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.2.15. Market Revenue and Forecast, by End-User  

13.3. APAC 

13.3.1. Market Revenue and Forecast, by Service Type  

13.3.2. Market Revenue and Forecast, by Modeling Technology  

13.3.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.3.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.3.5. Market Revenue and Forecast, by End-User  

13.3.6. India 

13.3.6.1. Market Revenue and Forecast, by Service Type  

13.3.6.2. Market Revenue and Forecast, by Modeling Technology  

13.3.6.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.3.6.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.3.7. Market Revenue and Forecast, by End-User  

13.3.8. China 

13.3.8.1. Market Revenue and Forecast, by Service Type  

13.3.8.2. Market Revenue and Forecast, by Modeling Technology  

13.3.8.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.3.8.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.3.9. Market Revenue and Forecast, by End-User  

13.3.10. Japan 

13.3.10.1. Market Revenue and Forecast, by Service Type  

13.3.10.2. Market Revenue and Forecast, by Modeling Technology  

13.3.10.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.3.10.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.3.10.5. Market Revenue and Forecast, by End-User  

13.3.11. Rest of APAC 

13.3.11.1. Market Revenue and Forecast, by Service Type  

13.3.11.2. Market Revenue and Forecast, by Modeling Technology  

13.3.11.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.3.11.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.3.11.5. Market Revenue and Forecast, by End-User  

13.4. MEA 

13.4.1. Market Revenue and Forecast, by Service Type  

13.4.2. Market Revenue and Forecast, by Modeling Technology  

13.4.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.4.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.4.5. Market Revenue and Forecast, by End-User  

13.4.6. GCC 

13.4.6.1. Market Revenue and Forecast, by Service Type  

13.4.6.2. Market Revenue and Forecast, by Modeling Technology  

13.4.6.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.4.6.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.4.7. Market Revenue and Forecast, by End-User  

13.4.8. North Africa 

13.4.8.1. Market Revenue and Forecast, by Service Type  

13.4.8.2. Market Revenue and Forecast, by Modeling Technology  

13.4.8.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.4.8.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.4.9. Market Revenue and Forecast, by End-User  

13.4.10. South Africa 

13.4.10.1. Market Revenue and Forecast, by Service Type  

13.4.10.2. Market Revenue and Forecast, by Modeling Technology  

13.4.10.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.4.10.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.4.10.5. Market Revenue and Forecast, by End-User  

13.4.11. Rest of MEA 

13.4.11.1. Market Revenue and Forecast, by Service Type  

13.4.11.2. Market Revenue and Forecast, by Modeling Technology  

13.4.11.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.4.11.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.4.11.5. Market Revenue and Forecast, by End-User  

13.5. Latin America 

13.5.1. Market Revenue and Forecast, by Service Type  

13.5.2. Market Revenue and Forecast, by Modeling Technology  

13.5.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.5.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.5.5. Market Revenue and Forecast, by End-User  

13.5.6. Brazil 

13.5.6.1. Market Revenue and Forecast, by Service Type  

13.5.6.2. Market Revenue and Forecast, by Modeling Technology  

13.5.6.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.5.6.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.5.7. Market Revenue and Forecast, by End-User  

13.5.8. Rest of LATAM 

13.5.8.1. Market Revenue and Forecast, by Service Type  

13.5.8.2. Market Revenue and Forecast, by Modeling Technology  

13.5.8.3. Market Revenue and Forecast, by Deployment & Delivery Mode  

13.5.8.4. Market Revenue and Forecast, by Data Inputs Utilized  

13.5.8.5. Market Revenue and Forecast, by End-User  

Chapter 14. Company Profiles 

14.1. Siemens Xcelerator 

14.1.1. Company Overview 

14.1.2. Product Offerings 

14.1.3. Financial Performance 

14.1.4. Recent Initiatives 

14.2. Other Leading Players 

14.2.1. Company Overview 

14.2.2. Product Offerings 

14.2.3. Financial Performance 

14.2.4. Recent Initiatives 

14.3. IBM Corporation 

14.3.1. Company Overview 

14.3.2. Product Offerings 

14.3.3. Financial Performance 

14.3.4. Recent Initiatives 

14.4. AbbottABB Ltd 

14.4.1. Company Overview 

14.4.2. Product Offerings 

14.4.3. Financial Performance 

14.4.4. Recent Initiatives 

14.5. Honeywell International Inc. 

14.5.1. Company Overview 

14.5.2. Product Offerings 

14.5.3. Financial Performance 

14.5.4. Recent Initiatives 

14.6. Hitachi Energy 

14.6.1. Company Overview 

14.6.2. Product Offerings 

14.6.3. Financial Performance 

14.6.4. Recent Initiatives 

14.7. Microsoft Corporation 

14.7.1. Company Overview 

14.7.2. Product Offerings 

14.7.3. Financial Performance 

14.7.4. Recent Initiatives 

14.8. Amazon Web Services (AWS) 

14.8.1. Company Overview 

14.8.2. Product Offerings 

14.8.3. Financial Performance 

14.8.4. Recent Initiatives 

14.9. C3.ai 

14.9.1. Company Overview 

14.9.2. Product Offerings 

14.9.3. Financial Performance 

14.9.4. Recent Initiatives 

14.10. GridOS 

14.10.1. Company Overview 

14.10.2. Product Offerings 

14.10.3. Financial Performance 

14.10.4. Recent Initiatives 

Chapter 15. Research Methodology 

15.1. Primary Research 

15.2. Secondary Research 

15.3. Assumptions 

Chapter 16. Appendix 

16.1. About Us 

16.2. Glossary of Terms 

For questions or customization requests, please reach out to us at sales@precedenceresearch.com

Frequently Asked Questions

Answer : The major players in the ai based energy forecasting services market include Siemens AG, General Electric Company, Schneider Electric SE, IBM Corporation, ABB Ltd, Honeywell International Inc., Hitachi Energy, Microsoft Corporation, Amazon Web Services (AWS), and C3.ai

Answer : The driving factors of the ai based energy forecasting services market are the increasing energy demand from crucial sectors across the globe, the need to integrate renewable energy sources to meet the requirements, and the advancement of AI tools and platforms to conduct precise energy generation forecasting for effective energy distribution and management.

Answer : North America region will lead the global ai based energy forecasting services market during the forecast period 2026 to 2035.

Ask For Sample

No cookie-cutter, only authentic analysis – take the 1st step to become a Precedence Research client