Cloud Computing In Energy Market Size, Share and Trends 2025 to 2034

Cloud Computing In Energy Market (By Service: Infrastructure as a service (IaaS), Platform as a service (PaaS), Software as a service (SaaS); By Platforms: Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP), Others; By Infrastructure: Servers, Storage, Networking equipment) - Global Industry Analysis, Size, Trends, Leading Companies, Regional Outlook, and Forecast 2025 to 2034

Last Updated : 21 Nov 2025  |  Report Code : 3384  |  Category : ICT   |  Format : PDF / PPT / Excel

List of Contents

What is the Cloud Computing In Energy Market Size?

The global cloud computing in energy market size is accounted at USD 1.45 billion in 2025 and predicted to increase from USD 1.60 billion in 2026 to approximately USD 3.42 billion by 2034, representing a notworthy CAGR of 10% between 2024 and 2034.

Cloud Computing in Energy Market Size 2025 To 2034

Cloud Computing In Energy Market Key Takeaways

  • North America led the global market with the highest market share of 44% in 2024.
  • Asia-Pacific is expected to expand at the fastest CAGR during the forecast period.
  • By Service, the infrastructure as a service (IaaS) segment has held a market share of 43% in 2024.
  • By Service, the platform as a service (PaaS) segment is anticipated to grow at the fastest CAGR of 11.7% during the projected period.
  • By Platform, the Amazon web services (AWS) segment contributed more than 34% of the market share in 2024.
  • By Platform, the google cloud platform (GCP) segment is estimated to expand at the fastest CAGR over the projected period.
  • By Infrastructure, the servers segment held the biggest revenue share of 41% in 2024.
  • By Infrastructure, the networking equipment segment is expanding at a remarkable CAGR of 12.9% over the predicted period.

What is the Cloud Computing In Energy Market?

Cloud computing within the energy sector involves harnessing distant servers and digital assets to optimize multiple facets of energy generation, distribution, and administration. It empowers the implementation of real-time data analysis, anticipatory maintenance, and the fine-tuning ofsmart grids. By storing and managing extensive data in cloud infrastructure, energy firms can boost operational effectiveness, minimize downtime, and arrive at better-informed conclusions. Furthermore, cloud computing facilitates the amalgamation of renewable energy sources, demand responsiveness systems, and electric vehicle charging networks, thus nurturing a more eco-friendly and resilient energy ecosystem while optimizing expenses and performance.

How is AI Contributing to Cloud Computing In the Energy Market?

AI, together with cloud computing, is the main engine that drives the energy value chain through its high efficiency, reliability, and the greatest. It makes possible preventive maintenance, storage of energy in the most efficient way, management of the power grid in a more technologically advanced way, and intelligent trading. Real-time data is analyzed daily by the AI algorithms to predict power usage, cut out interruptions, and raise the level of performance in operations. Moreover, the energy sector undergoes a digital transformation as AI makes the use of energy more sustainable, and thus, the energy sector is transformed.

Cloud Computing In Energy Market Growth Factors

Cloud computing has emerged as a transformative force within the energy market, ushering in a wave of innovation while confronting certain industry obstacles. It is now a catalyst for growth and evolution in the energy sector.

Cloud computing's ascent in the energy realm is marked by prominent trends. Firstly, the exponential surge in data from smart grids, IoT devices, and renewable energy sources necessitates efficient data handling and analysis, areas where cloud platforms excel. Secondly, the growing emphasis on eco-friendly and renewable energy sources demands agile, data-centric operations, which cloud solutions facilitate. Additionally, the accelerated adoption of remote work and digital collaboration, spurred by the pandemic, is propelling cloud usage, allowing energy firms to function seamlessly across geographically dispersed teams.

The expansion of cloud computing in the energy sphere is underpinned by various factors. Cloud solutions offer scalability, adaptability, and cost-efficiency, enabling energy companies to adjust their operations as required and optimize expenses. Furthermore, cloud-based analytics and machine learning capabilities offer predictive insights that bolster grid stability, minimize downtime, and enable proactive maintenance, ultimately enhancing overall operational efficiency. These dynamics present substantial business openings for energy companies to enhance their services, cut operational expenses, and introduce innovative solutions, bolstering their competitive standing.

While the advantages of cloud computing in energy are considerable, hurdles must be surmounted. Security and data privacy concerns loom large, particularly given the sensitivity of energy sector data and its critical infrastructure. Safeguarding cloud infrastructure from cyber threats and disruptions is paramount. Additionally, the shift to cloud-based systems necessitates significant investments in technology and workforce development. Managing this transformation carefully is essential to minimize disruptions and ensure a seamless transition.

In summary, cloud computing is reshaping the energy market by confronting industry challenges and harnessing key growth drivers. As the energy sector continues to navigate its digital evolution, cloud solutions offer a robust toolbox for enhancing operational efficiency, integrating renewable energy sources, and delivering more sustainable and resilient energy ecosystems. Nonetheless, businesses must address security apprehensions and make prudent investments in technology and workforce advancement to fully unlock cloud computing's potential within the energy industry.

Market Outlook

  • Industry Growth Overview: The data analytics and renewable energy integration market are the factors to consider for the rapid growth of the market.
  • Sustainability Trends: The main practices are those that involve energy-efficient data centers, the use of renewable energy sources, AI-powered optimization, and reducing e-waste.
  • Global Expansion: North America is the region that is most open to the market, while Asia Pacific is the fastest-growing area because of its considerable investments in smart grids.
  • Major Investors: The significant players are tech giants such as AWS, Microsoft Azure, Google Cloud, and Oracle, and energy companies like Duke Energy.
  • Startup Ecosystem: Cloud platforms are being used by startups for innovative green solutions, remote monitoring, and data analytics; thus, these are the areas that are most important for the Sustainable Development Goals.

Market Scope

Report Coverage Details
Growth Rate from 2025 to 2034 CAGR of 10%
Market Size in 2025 USD 1.45 Billion
Market Size in 2026 USD 1.60 Billion
Market Size by 2034 USD 3.42 Billion
Largest Market North America
Base Year 2024
Forecast Period 2025 to 2034
Segments Covered Service, Platforms, Infrastructure, and Region
Regions Covered North America, Europe, Asia-Pacific, Latin America, and Middle East & Africa

Market Dynamics

Driver

Integration of renewable energy

The seamless integration of renewable energy sources is a dynamic force propelling market expansion within the energy sector. This phenomenon finds its impetus in a convergence of influential factors. Foremost, the global imperative to curtail carbon emissions and confront the specter of climate change has instigated a widespread transition toward clean energy resources such as solar, wind, and hydroelectric power. Governments and regulatory bodies worldwide are actively incentivizing and mandating the incorporation of these sustainable energy alternatives, fostering a fertile landscape for market growth.

Additionally, noteworthy advancements in renewable energy technologies have rendered them increasingly competitive and dependable. With the diminishing costs of solar panels and wind turbines, complemented by enhancements in energy storage solutions, the feasibility of incorporating renewable sources into the energy matrix has surged. This transition also bolsters energy security by diversifying the energy supply, reducing reliance on fossil fuels, and mitigating vulnerabilities to supply disruptions.

Furthermore, given the inherent variability of renewable resources, the synergy between cloud computing and data analytics assumes paramount significance. These cutting-edge technologies empower grid operators to adeptly manage the intermittent nature of renewables, thereby ensuring grid stability and unwavering reliability. In summation, the integration of renewable energy sources not only harmonizes with environmental imperatives but also ushers in a wealth of economic opportunities, technological progress, and enhanced energy security, thus fueling substantial market growth within the energy sector.

Restraints

Reliability and downtime

Reliability and downtime concerns present significant restraints on the growth of cloud computing in the energy market. Firstly, the energy sector is characterized by mission-critical operations, where even brief interruptions or downtime can have far-reaching consequences, impacting grid stability, operational efficiency, and customer satisfaction. Relying on cloud service providers introduces an element of vulnerability, as energy companies have limited control over the provider's infrastructure and maintenance schedules.

Secondly, as the energy industry transitions to more data-driven and automated processes, uninterrupted access to data and applications becomes paramount. Any cloud service outage can disrupt essential functions like real-time monitoring, predictive maintenance, and energy distribution, potentially causing financial losses and safety concerns. Furthermore, energy companies often operate in remote or challenging environments, such as offshore oil rigs or remote substations, where reliable internet connectivity may not always be guaranteed.

This dependency on network availability further exacerbates concerns about cloud reliability. Overall, while cloud computing offers numerous benefits, addressing these reliability and downtime challenges is crucial to gaining the trust of energy companies and ensuring the seamless integration of cloud technology in the sector. Robust service-level agreements (SLAs), redundancy measures, and disaster recovery plans are essential components of mitigating these restraints.

Opportunities

Remote monitoring and management

Remote monitoring and management (RMM) is emerging as a game-changer in the energy market, creating a myriad of opportunities. By leveraging cloud computing and IoT technologies, RMM enables energy companies to remotely oversee and optimize their assets, from power plants to distribution networks, regardless of geographic distance. This presents opportunities for enhanced operational efficiency as on-site visits become less necessary, reducing costs and risks associated with physical inspections and maintenance. Moreover, RMM empowers companies to proactively identify and address issues, minimizing downtime and improving grid reliability.

Additionally, the ability to collect real-time data and insights from remote assets enables better decision-making, predictive maintenance, and asset performance optimization, fostering a more sustainable and resilient energy ecosystem. As the energy sector continues to digitize, RMM is poised to unlock new avenues for cost savings, innovation, and improved service delivery, driving market growth and competitiveness.

Impact of COVID-19

The COVID-19 pandemic accelerated the adoption of cloud computing in the energy market. As remote work and collaboration became essential, cloud solutions enabled seamless operations and data access. Energy companies increasingly relied on cloud-based analytics for grid management, remote monitoring, and predictive maintenance, ensuring continuity while minimizing on-site staff. The pandemic also highlighted the importance of cloud-driven digital transformation in enabling energy resilience.

It emphasized the value of cloud scalability and cost-efficiency amid economic uncertainties. Overall, COVID-19 underscored cloud computing's pivotal role in enhancing efficiency, resilience, and innovation within the energy sector, driving its continued growth.

Service Insights

According to the service, the infrastructure as a service (IaaS) sector has held a 43% revenue share in 2024. Infrastructure as a service (IaaS) holds a substantial share in the cloud computing market for energy due to its unique suitability for the sector's specific needs. Energy companies require scalable and flexible IT infrastructure to accommodate the variable demands of power generation and distribution. IaaS offers a cost-effective and agile solution, allowing them to scale resources up or down as needed, optimize operational efficiency, and efficiently integrate renewable energy sources. Moreover, it provides the foundation for data-intensive tasks like real-time monitoring and predictive analytics, which are crucial for grid stability and managing energy assets effectively.

The platform as a service (PaaS) sector is anticipated to expand at a significantly CAGR of 11.7% during the projected period. The dominance of the platform as a service (PaaS) segment in the cloud computing market for the energy sector is attributed to its capacity to expedite and refine application development and deployment processes. PaaS empowers energy firms to craft and tailor applications that cater precisely to their requirements, enhancing grid management, data analysis, and customer services. Moreover, PaaS delivers a scalable and cost-efficient solution, alleviating the complexities associated with infrastructure management. This adaptability and efficacy render PaaS the favored choice for energy enterprises seeking agility and innovation in response to the ever-evolving industry landscape, solidifying its substantial footprint within the market.

Platform Insights

In 2024, the Amazon Web Services (AWS) segment had the highest market share of 34% on the basis of the Platform. Amazon Web Services (AWS) commands a significant share of the cloud computing market within the energy sector due to several key factors. AWS offers a comprehensive array of cloud services tailored to the specific demands of energy companies, delivering scalable infrastructure, cutting-edge analytics, and IoT capabilities. Furthermore, AWS maintains a vast global network infrastructure that ensures dependable, low-latency connectivity, ideal for remotely overseeing and managing energy assets. AWS's unwavering dedication to security and compliance aligns seamlessly with the rigorous standards governing the energy industry. Its established reputation, extensive client base, and strategic alliances further cement its dominant position in the energy-focused cloud computing landscape.

The Google cloud platform (GCP) is anticipated to expand at the fastest rate over the projected period. Google cloud platform (GCP) holds a substantial share in the cloud computing energy market due to its robust infrastructure, data analytics capabilities, and commitment to sustainability. GCP's secure and scalable cloud services enable energy companies to efficiently manage vast data volumes, optimize grid operations, and integrate renewable resources. Additionally, Google's extensive experience in data centers powered by renewable energy aligns with the energy sector's sustainability goals. GCP's ability to deliver innovative solutions and environmentally responsible services positions it as a trusted partner in the energy market's digital transformation, contributing to its market dominance.

Infrastructure Insights

The servers segment held the largest revenue share of 41% in 2024. The servers segment holds a significant share in the cloud computing in the energy market because it forms the basis of cloud infrastructure. Energy companies rely on powerful server clusters to store and process vast amounts of data generated by smart grids, IoT devices, and renewable energy sources. These servers facilitate real-time analytics, predictive maintenance, and grid optimization. As the energy sector increasingly embraces digital transformation and data-driven decision-making, the demand for robust and scalable server infrastructure continues to grow, making this segment a pivotal component in the cloud computing ecosystem for energy companies.

The networking equipment segment is anticipated to grow at a significantly faster rate, registering a CAGR of 12.9% over the predicted period. The networking equipment segment holds a significant share in the cloud computing in the energy market due to its pivotal role in enabling reliable and efficient data communication within the energy infrastructure. As the industry increasingly adopts cloud-based solutions, networking equipment becomes essential for connecting remote assets, such as smart grids and sensors, to cloud platforms. This connectivity is crucial for real-time data monitoring, analytics, and grid optimization. Furthermore, networking equipment enhances cybersecurity measures, ensuring the secure transmission of sensitive energy data to and from the cloud, making it a cornerstone of the sector's digital transformation.

Regional Insights

U.S. Cloud Computing in Energy Market Size and Growth 2025 to 2034

The U.S. cloud computing in energy market size is estimated at USD 450 million in 2025 and is estimated to surpass around USD 1,080 million by 2034, growing at a CAGR of 10.17% from 2025 to 2034.

U.S. Cloud Computing in Energy Market Size 2025 To 2034

North America has held the largest revenue share 44% in 2024. North America dominates the cloud computing in the energy market due to several key factors. Firstly, the region boasts of advanced technological infrastructure, a robust cloud ecosystem, and a high level of digitalization within the energy sector. Additionally, North America is home to numerous innovative energy companies and tech giants investing heavily in cloud solutions. Stringent regulatory requirements and a strong emphasis on grid modernization drive the adoption of cloud-based analytics and remote monitoring. Furthermore, the region's commitment to renewable energy integration and a mature market for cloud services make North America a frontrunner in this transformative sector.

How is North America Leading in the Cloud Computing in Energy Market?

The continent has the highest market share, owing to the extensive digital infrastructure, rapid migration to advanced cloud technologies, and the strategic emphasis on smart energy systems. The region advantages from the partnership between tech suppliers and power companies in the form of optimized and sustainable energy solutions.
The country is the cloud-based energy sector innovation center for the whole region. A ceaseless rerouting of funds into smart infrastructure and the incorporation of renewables not only support the modernization but also make the whole U.S. grid more efficient and resilient.

Cloud Computing in Energy Market Share, By Region, 2024 (%)

Asia-Pacific is estimated to observe the fastest expansion. The region's rapid industrialization and urbanization have led to increased energy demand, driving the need for advanced digital solutions. Moreover, Asia-Pacific boasts a growing renewable energy sector, necessitating cloud-based integration for grid management. Additionally, favorable government initiatives and investments in smart grid technology further accelerate adoption. The region's burgeoning tech-savvy population and robust IT infrastructure also contribute to its leadership in cloud adoption, making Asia-Pacific a hotbed for innovation and growth in the cloud computing in energy market.

How is Asia-Pacific Performing in the Cloud Computing In Energy Market?

The region with the greatest growth, all enabled by the digitalization, industry expansion, and favorable government regulations. The demand for cloud computing is mainly because of energy management that is already very efficient, grid modernization, and renewable integration.

The country is being placed among the world's leading nations in cloud-based energy systems, with all the support coming from government policies and the modernization of the power sector. The need for more efficient energy solutions and the uptake of renewables are gradually pushing the region's technological adoption.

How is North America Leading in the Cloud Computing in Energy Market?

The continent has the highest market share, owing to the extensive digital infrastructure, rapid migration to advanced cloud technologies, and the strategic emphasis on smart energy systems. The region advantages from the partnership between tech suppliers and power companies in the form of optimized and sustainable energy solutions.
The country is the cloud-based energy sector innovation center for the whole region. A ceaseless rerouting of funds into smart infrastructure and the incorporation of renewables not only support the modernization but also make the whole U.S. grid more efficient and resilient.

Value Chain Analysis

  • Inbound Logistics: Taking delivery of, and storing, as well as managing the raw materials, such as data and sensor inputs, and cloud energy services, and performing these functions based on these suppliers.
    Key Players: DHL
  • Operations: Converting the raw data into value by providing services like grid management, forecasting, and consumption optimization.
    Key players: ABB, Siemens, and Schneider Electric
  • Outbound Logistics: Getting processed data, reports, and real-time insights to the end-users and energy partners.
    Key Players: AWS
  • Marketing and Sales: Selling the cloud-based energy solutions while stressing their cost efficiency, sustainability, and digital innovations.
    Key players: AWS and Microsoft Azure
  • Service: Continuously providing the support, maintenance, and upgrades necessary for operating efficient, secure, and scalable activities.
    Key Players: Salesforce

Cloud Computing in Energy Market Companies

  • Amazon Web Services (AWS)
  • Microsoft Azure
  • Google Cloud Platform (GCP)
  • IBM Cloud
  • Oracle Cloud
  • Salesforce
  • SAP
  • General Electric (GE)
  • Siemens
  • ABB
  • Schneider Electric
  • Cisco
  • Honeywell
  • Huawei
  • VMware
  • Dell Technologies
  • Red Hat
  • NTT Communications
  • Accenture
  • Infosys

Recent Developments

  • In October 2022, the Power Grid Corporation of India Limited and the Indian Institute of Science, joined forces to establish a central hub and a think-tank aimed at fostering collaboration among cybersecurity experts. Their primary objective is to collectively address the cybersecurity challenges associated with power grid systems. Ensuring the consistent and secure supply of electricity hinges on the development of robust cybersecurity defenses. Achieving a resilient and safe power grid infrastructure necessitates a coordinated research effort that bridges the realms of academia and industry. This collaborative initiative represents a significant step towards fulfilling that purpose.
  • In January 2023, SHV Energy forged a strategic partnership with TCS to fortify its security operations and processes. This collaboration revolves around a cutting-edge platform that leverages both real-time and historical data analysis of events and incidents to centralize pertinent information, evaluate threats, and trigger the appropriate responses. TCS will take on the responsibilities of managing vulnerabilities, providing threat intelligence, and overseeing security monitoring and detection. These services extend to both on-site and cloud-based infrastructure and applications, enhancing the overall security posture for SHV Energy.
  • In March 2023witnessed the unveiling of SmartSimple Cloud + AI, an innovative offering from SmartSimple Software Inc., a renowned Canadian provider of cloud-based software solutions. This new platform introduces a groundbreaking feature by empowering users to infuse artificial intelligence into their workflows. Notably, SmartSimple Cloud + AI delivers a high degree of flexibility, granting end-users the ability to tailor workflows to their precise requirements and preferences. This infusion of AI capabilities into workflow processes heralds a significant stride towards enhanced customization and efficiency in the realm of cloud-based software solutions.
  • In November 2025, A UK-based AI and blockchain company launched a zero-cost trial for cloud computing services, promoting risk-free user experiences, transparency, sustainability, data security, and traceability through innovative contract formats.
    https://markets.businessinsider.com
  • In August 2025, FY Energy launched encrypted green cloud computing solutions, leveraging renewable energy and advanced encryption to offer sustainable, secure services and lower carbon footprints.
    https://finance.yahoo.com

Segments Covered in the Report

By Service

  • Infrastructure as a service (IaaS)
  • Platform as a service (PaaS)
  • Software as a service (SaaS)

By Platforms

  • Amazon Web Services (AWS)
  • Microsoft Azure
  • Google Cloud Platform (GCP)
  • Others

By Infrastructure

  • Servers
  • Storage
  • Networking equipment

By Geography

  • North America
  • Europe
  • Asia-Pacific
  • Latin America
  • Middle East and Africa

For inquiries regarding discounts, bulk purchases, or customization requests, please contact us at sales@precedenceresearch.com

Frequently Asked Questions

The global cloud computing in energy market size is expected to reach around USD 3.42 billion by 2034 from USD 1.45 billion in 2025.

The global cloud computing in energy market will register growth rate of 10% between 2025 and 2034.

The major players operating in the cloud computing in energy market are Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP), IBM Cloud, Oracle Cloud, Salesforce, SAP, General Electric (GE), Siemens, ABB, Schneider Electric, Cisco, Honeywell, Huawei, VMware, Dell Technologies, Red Hat, NTT Communications, Accenture, Infosys, and Others.

The driving factors of the cloud computing in energy market are the integration of renewable energy and the exponential surge in data from smart grids.

North America region will lead the global cloud computing in energy market during the forecast period 2025 to 2034.

Ask For Sample

No cookie-cutter, only authentic analysis – take the 1st step to become a Precedence Research client

Meet the Team

Shivani Zoting is one of our standout authors, known for her diverse knowledge base and innovative approach to market analysis. With a B.Sc. in Biotechnology and an MBA in Pharmabiotechnology, Shivani blends scientific expertise with business strategy, making her uniquely qualified to analyze and decode complex industry trends. Over the past 5+ years in the market research industry, she has become a trusted voice in providing clear, actionable insights across a...

Learn more about Shivani Zoting

With over 14 years of experience, Aditi is the powerhouse responsible for reviewing every piece of data and content that passes through our research pipeline. She ensures the accuracy, relevance, and clarity of insights we deliver. Her expertise spans ICT, automotive, and several cross-domain industries.

Learn more about Aditi Shivarkar

Recently Viewed

Robotic Process Automation In Healthcare Market Size to Hit USD 22.56 Billion by 2034

Robotic Process Automation In Healthcare Market (By Solution: Software, Services, Implementation, Su...

Grid Edge Technologies Market Size, Report by 2034

Grid Edge Technologies Market (By Offering: Hardware, Software, Services; By Deployment Type: Behind...

Cell Counting Market Size to Surpass USD 22.60 Billion by 2034

The global cell counting market size is evaluated at USD 11.09 billion in 2025 and is forecasted to ...

Distributed Enterprise Market Size to Surpass USD 18.90 Bn by 2034

The distributed enterprise market is gaining momentum as businesses shift to cloud-based infrastruct...

Related Reports